0040-4039(94)02229-1

Easy Access to Substituted Selenazine and Selenopyran Derivatives by a Cycloaddition-Cycloreversion Process.

Didier Dubreuil, Jean Paul Pradère*, Nathalie Giraudeau

Laboratoire de Synthèse Organique associé au CNRS, Faculté des Sciences et des Techniques, 2, rue de la Houssinière, 44 072 Nantes, France.

Martin Goli

Laboratoire de Chimie Organique Structurale, Faculté des Sciences et des Techniques, 22 BP 582 Abidjan 22, Côte d'Ivoire.

François Tonnard

Groupe Matière Condensée et Matériaux associé au CNRS, Université de Rennes-I Beaulieu, Avenue du Général Leclerc, 35 042 Rennes, France.

Abstract: N'-selenoacylamidines were isolated by condensation of selenobenzamide with orthoamides. [4+2] cycloadditions with electrophilic dienophiles were performed leading to 1,3-selenazine derivatives. Selenoamide vinylogs obtained by thermolysis of 4H-1,3-selenazines, were the precursors of functionalised selenopyrans or selenophenes.

The use of hetero Diels-Alder reactions in heterochemistry has been widely demonstrated. ¹ In recent years, the synthesis of selenium heterocycles has been actively studied using carbon-selenium double bond as 2π dienophile intermediates for [4+2] cycloadditions. ² Only few cycloadditions with selenodienic systems have been reported. ³ In this preliminary study we present an efficient route towards selenazine and selenopyran derivatives by [4+2] cycloadditions from N'-selenoacylamidines and selenoamide vinylogs respectively.

We prepared the selenobenzamide 1 by a modified Takikawa procedure.^{4a} Bis-trimethylsilyl selenide^{4b} reacted with benzonitrile in absence of solvent at 80°C in sealed tube affording 1 in 80% yield. Easier access to 1, produced in 90% yield from benzonitrile, was also performed using sodium hydrogen selenide as proposed by Reid⁵ (PhCN, NaSeH 4 eq., Py., 80°C, 1 hr.).

Following the experimental conditions previously described for the synthesis of N'-thioacylamidine 3 from thiobenzamide⁶, condensation of selenobenzamide 1 with N,N'-dimethylformamide dimethyl acetal and with N,N'-dimethylacetamide dimethyl acetal, led to the corresponding N'-selenoacylamidines 2a and 2b in 30% and 90% yield respectively⁷ (¹H NMR of the crude product of the reaction with 2a, before the purification on silica gel, shown its presence in 80% yield in the mixture). Furthermore 3 can be considered as a potential precursor of 2b via a 3-methylthio-2-aza-propeniminium salt 4 obtained quantitatively from 3 by addition of methyl iodide. Reaction of 4 with sodium hydrogen selenide afforded 2b in 50% yield.⁸

i) for 2a: (MeO)₂C(H)NMe₂ (1.3eq.), CH₂Cl₂, O°C, 1.5 hrs; for 2b: (MeO)₂C(Me)NMe₂ (1.5eq.), CH₂Cl₂, r.t.,1.5 hrs.;

ii) Mel (10eq.); iii) Py., NaSeH, EtOH reflux, 0.5 hr.

These results prompted us to investigate the reactivity of 2a and 2b in [4+2] cycloadditions with electrophilic dienophiles. Addition of 2a with an excess of methyl acrylate (MA) at room temperature, afforded 5,6-dihydro-4H-1,3-selenazine 5 in 40% yield based on 1. The cycloaddition of 2b in methyl acrylate at 80 °C, was followed by the elimination of dimethylamino group, giving the 6H-1,3-selenazine 6 in 50% overall yield. Cycloaddition-elimination has also been observed with methyl vinyl ketone (MVK) as dienophile and 2a or 2b, affording 6H-1,3-selenazines 7a and 7b in 65% yield respectively.

i) 2a, MA (10eq.), CH₂Cl₂, r.t., 5 hrs.; ii) for 6: 2b, MA (10eq.) reflux, 20 hrs.; for 7a: 2a, MVK (10eq.), THF, r.t., 4 hrs.; for 7b: 2b, MVK (10eq.), THF reflux, 8 hrs.; iii) MVK (20eq.), CH₂Cl₂ reflux, 20 hrs; iv) for 8a: DMAD (10eq.), CH₂Cl₂, 0°C, 20hrs., for 8b: idem at 40°C.

Access to 7a can also be performed from dihydro-4H-1,3-selenazine 5, via 2a, in 70% yield by a retro-Diels-Alder and [4 + 2] cycloaddition sequence in presence of an excess of methyl vinyl ketone.

The reaction of N'-selenoacylamidines with dimethyl acetylenedicarboxylate (DMAD) was then studied. Addition of dimethyl acetylenedicarboxylate to 2a and 2b afforded 4H-selenopyrans 8a and 8b isolated in 45% and 60% overall yield respectively. 10 The obtention of 4H-selenopyrans 8 from 2 by a

cycloaddition-cycloreversion-cycloaddition process was confirmed by the analysis of the intermediates isolated in the synthesis of 8b. [4 + 2] cycloaddition of 2b with dimethyl acetylenedicarboxylate at 0°C gave the 4H-1,3-selenazine 9 in 58% yield. Thermolysis of 9 at 40°C led to the functionalised selenoamide vinylog 10 in 90% yield. Access to 4H-selenopyran 8b was achieved from 10 in 55% yield by [4+2] cycloaddition with an excess of dimethyl acetylenedicarboxylate. Moreover in ethanol, the selenoamide vinylogs 10 can also be converted, to the selenophene 11 in 75% yield. Similar results were obtained with 4,4-diethoxy-2-butyn-1-al (DEBA) as dienophile. The selenophene 14 was synthetised from 2b via the 4H-1,3-selenazine 12 (88% yield) and the selenoamide vinylog 13 (64% yield). ¹H and ¹³C NMR data of compounds 9 to 14 are in accord with the proposed structures. ¹¹

i) for 9: DMAD (1.5eq.), THF, 0°C, 1.5 hrs.; for 12: DEBA (2eq.), CH₂Cl₂, 0°C, 1 hr.; ii) CH₂Cl₂ reflux, 15 hrs.; iii) DMAD (1.5eq.), CH₂Cl₂, 5°C, 0.5 hr.; iv) EtOH reflux, 12hrs.

In order to evaluate the influence of selenium atom in [4 + 2] cycloaddition, the reactivity of N'-selenoacylamidine 2b was compared to its analog N'-thioacylamidine 3 which showed a similar configuration and conformation in the solid state. 12 A mixture containing 2b (1 mmol) and 3 (1 mmol), was stirred at 20°C in THF for 1.5 hours in the presence of dimethyl acetylenedicarboxylate (1 mmol). The resulting cycloadduct, isolated in 80% yield, was identified as the 4 H-1,3-selenazine 9. Unreacted 3 was recovered after purification by flash chromatography. The higher reactivity of the N'-selenoacylamidine could be analysed on the basis of a predominant HOMO diene / LUMO dienophile interaction determinated by semi empirical calculations using PM3 method. 13 Therefore thermolysis of 4 H-1,3-selenazine 9 was easier than with the corresponding 4 H-1,3-thiazine analog. 14

In summary, N'-selenoacylamidines and selenoamide vinylogs can be considered as substituted 3-aza-1-selenobutadienes and 1-selenobutadienes respectively for [4 + 2] cycloadditions under mild conditions. Cycloaddition-cycloreversion or reverse appear as an efficient way to transform N'-selenoacylamidines into selenoamide vinylogs or 4H-1,3-selenazines into 4H-selenopyran derivatives.

References and notes:

- 1. Boger, D. L.; Weinreb, S. B. in "Hetero Diels-Alder Methodology in Organic Synthesis" Academic press 1987.
- For recent studies on selenoketones, see; a) Abelman, M.M. Tetrahedron Lett., 1991, 32, 7389-7392 and references therein; b) Segi, M.; Takahashi, T.; Ichinose, H.; Ming Li, G.; Nakajima, T. Tetrahedron Lett., 1992, 33, 7865-7868 and references therein. c) Shimada, K.; Jin, N.; Fujimura, M.; Nagano, Y.; Kudoh, E.; Takikawa, Y. Chem. Lett., 1992, 1843-1846
- a) Ming Li, G.; Segi, M.; Nakajima, T. Tetrahedron Lett. 1992, 33, 3515-3518. b) Okuma, K.; Kojima, K.; Kaneko, I.; Ohta, H. Tetrahedron Lett., 1992, 33, 1333-1336.
- a) Shimada, K.; Hikage, S.; Takeishi, Y.; Takikawa, Y. Chem. Lett., 1990, 1403-1406 and references therein.
 b) Detty, M. R.; Seidler, M. D. J. Org. Chem., 1982, 47, 1354-1356.
- 5. Lai, Long-li.; Reid, D. H. Synthesis, 1993, 870-872 and references therein.
- 6. Tea, G. C.; Chehna, M.; Pradère, J. P.; Duguay, G.; Toupet, L. Phosphorus and Sulfur; 1986, 27, 327-339.
- Spectral data for 2a and 2b: 2a ¹H NMR (CD₃COCD₃, 90MHz): δ 3.24 (1s, 3H), 3.36 (1s, 3H), 8.68 (1s,1H), 2b m.p. 123-125°C, ¹H NMR (CD₃COCD₃, 300MHz): δ 2.47 (1s, 3H), 3.20 (1s, 3H), 3.41 (1s, 3H), ¹³ C NMR (CD₃COCD₃, 75.47MHz): δ 19.4, 39.8, 40.4, 128.1, 129.4, 131.0, 146.0, 173.4 and 196.4, for X-Ray data see reference 12
- 8. Experimental conditions: 4 (6 mmoles) dissolved in 12ml of pyridine was added at room temperature to a solution of NaSeH generated in situ by addition of sodium borohydride (6 mmoles) in ethanol solution (40ml) containing selenium platelets (42 mmoles) at 0°C for 0.5 hour. The solution was heated at reflux of ethanol for another 0.5 hour. After extraction with AcOEt / HCl 0.1N, the organic layer was dried on MgSO4 and evaporated. 2b was isolated in 50% yield by flash chromatography on silica gel (AcOEt / petroleum ether: 20 / 80). A similar access to 2a from a 3-chloro-2-aza-2-propeniminium salt has been proposed: see Liebsher, J. Synthesis, 1988, 655-669.
- Spectral data for 5, 6 and 7: 5 ¹H NMR (CDCl₃, 200MHz): δ 2.41 (1s, 6H), 2.68 (m, J=12.3, 9.9, 4.3 Hz, 1H), 3.07 (1dd, J=11.0, 4.3 Hz, 1H), 3.61 (1dd, J=12.3, 11.0 Hz, 1H), 3.77 (1s, 3H), 4.22 (1d, J=9.9Hz, 1H), 6 ¹H NMR (CD₃COCD₃, 200MHz): δ 2.48 (1s, 3H), 3.64 (1s, 2H), 3.78 (1s, 3H), 7a ¹H NMR (CD₃COCD₃, 90MHz): δ 2.47 (1s, 3H), 3.66 (1s, 2H), 8.13 (1s, 1H), ¹³C NMR (CD₃COCD₃, 75.47MHz): δ 15.0, 26.0, 117.3, 129.7, 130.1, 133.5, 139.8, 149.9, 169.2 and 196.1, 7b ¹H NMR (CD₃COCD₃, 90MHz): δ 2.40 (1s, 3H), 2.46 (1s, 3H), 3.68 (1s, 2H), ¹³C NMR (CD₃COCD₃, 75.47MHz): δ 20.1, 22.4, 31.0, 114.6, 129.6, 130.3, 133.1, 139.6, 154.7, 164.6 and 198.9.
- Spectral data for 8a and 8b: 8a ¹H NMR (CD₃COCD₃, 300MHz): δ 2.26 (1s, 6H), 3.79 (1s, 6H), 3.83 (1s, 6H), 4.99 (1s, 1H), ¹³C NMR (CD₃COCD₃, 75.47MHz): δ 41.3, 53.2, 53.8, 64.1, 131.2, 132.3, 165.2 and 167.6, 8b ¹H NMR (CDCl₃: 200MHz): δ 1.94 (1s, 3H), 2.22 (1s, 6H), 3.78 (1s, 3H), 3.79 (1s, 3H), 3.80 (1s, 3H), 3.81 (1s, 3H).
- 11. Spectral data for **9** to **14**: **9** ¹H NMR (CDCl₃, 200MHz): δ 1.57 (1s, 3H), 2.39 (1s, 6H), 3.82 (1s, 3H), 3.86 (1s, 3H), **10** ¹H NMR (CDCl₃, 200MHz): δ 2.71 (1s, 3H), 3.58 (1s, 3H), 3.62 (1s, 3H), 3.67 (1s, 3H), 3.87 (1s, 3H), 13 C NMR (CDCl₃, 50.32MHz): δ 24.0, 43.7, 45.5, 52.0, 52.6, 120.7, 160.3, 172.0, 176.7 and 187.1, **11** ¹H NMR (CDCl₃, 200MHz): δ 2.65 (1s, 6H), 3.77 (1s, 3H), 3.86 (1s, 3H), 7.15 (1s, 1H), **12** ¹H NMR (CDCl₃, 200MHz): δ 1.23 (m, 6H), 1.59 (1s, 3H), 2.37 (1s, 6H), 3.70 (m, 4H), 5.62 (1s, 1H), 9.78 (1s, 1H), 13 C NMR (CDCl₃, 50.32MHz): δ 1.50, 15.1, 22.7, 39.1, 63.1, 63.5, 81.5, 98.5, 126.9, 128.5, 130.9, 134.4, 138.9, 143.2, 152.8, 189.7, 13 ¹H NMR (CDCl₃, 200MHz): δ 1.23 (m, 6H), 2.73 (1s, 6H), 3.71 (m, 4H), 5.49 (1s, 1H), 9.97 (1s, 1H), **14** ¹H NMR (CDCl₃, 50.32MHz): δ 1.23 (m, 6H), 2.73 (1s, 6H), 3.71 (m, 4H), 6.10 (1s, 1H), 6.99 (1s, 1H), 9.99 (1s, 1H), 13 C NMR (CDCl₃, 50.32MHz): δ 15.2, 45.6, 63.0, 98.1, 109.8, 132.8, 156.1, 162.6 and 187.1. Compounds **9**, **10**, **11**, **12** and **14** gave satisfactory elemental analysis.
- 12. The configuration of 2b was established from X-Ray data (Toupet, L., Université de Rennes-I, France, unpublished results). For structural determination of N'-thioacylamidine see: Chehna, M.; Pradère, J. P.; Quiniou, H.; Le Botlan, D.; Toupet L. Phosphorus, Sulfur and Silicon., 1989, 42, 15-19.
- 2b, HOMO -8.46 eV and LUMO -1.73 eV; 3, HOMO -8.94 eV and LUMO -1.48 eV. For PM3 calculations see Stewart, J. J. P. J. Comp. Chem., 1989, 10, 209-220.
- a) Tea, G. C.; Pradère, J. P.; Quiniou, H. J. Org. Chem., 1985, 50, 1545-1547. b) Pradère, J. P.; Tonnard, F.; Abouelfida, A.; Cellerin, C.; Andriamanamihaja, M.; Jousseaume, B.; Toupet, L.; Guenot, P. Bull. Soc. Chim. Fr., 1993, 130, 610-619.

(Received in France 10 October 1994; accepted 10 November 1994)